Β-catenin regulates NF-κB activity and inflammatory cytokine expression in bronchial epithelial cells treated with lipopolysaccharide.

نویسندگان

  • Jaewoong Jang
  • Jong-Hyeok Ha
  • Sang-In Chung
  • Yoosik Yoon
چکیده

In the present study, we demonstrate that lipopolysaccharide (LPS) induces the expression of inflammatory cytokines, including interleukin (IL)-6, IL-8, IL-1β, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1 in BEAS-2B human bronchial epithelial cells in a dose- and time-dependent manner. This increase was accompanied by an increased activity of nuclear factor (NF)‑κB. When the expression of β-catenin was analyzed following treatment with LPS, the mRNA level was unaltered; however, the β-catenin protein levels increased with a decrease in phosphorylation at the serine 33/37 residues. Nuclear β-catenin protein levels also increased along with the reporter activity of a β-catenin-responsive TOPFlash vector. To elucidate the regulatory role of β-catenin in the LPS-induced inflammatory response of bronchial epithelial cells, β-catenin production was knocked down using siRNA. Our results revealed that β-catenin protein levels and TOPFlash vector reporter activity were reduced to basal levels by siRNA transfection. In this experimental condition, NF-κB activity, measured by enzyme-linked immunosorbent assay (ELISA), electrophoretic mobility shift assay (EMSA) and an NF-κB responsive reporter assay, was reduced to basal levels. Similarly, LPS-induced inflammatory cytokine expression was reduced almost to basal levels following transfection with β-catenin siRNA. These results demonstrate that β-catenin positively regulates NF-κB activity, as well as the expression of inflammatory cytokines in the inflammatory response of LPS-treated bronchial epithelial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipoteichoic acid upregulates NF-κB and proinflammatory cytokines by modulating β-catenin in bronchial epithelial cells.

Lipoteichoic acid (LTA) is a major cell wall component and virulence factor of gram-positive bacteria. The present study investigated the LTA‑induced inflammatory response of BEAS‑2B human bronchial epithelial cells, and detected the expression levels of proinflammatory cytokines interleukin (IL)‑6, IL‑8, IL‑1β, tumour necrosis factor‑α and monocyte chemotactic protein‑1, the upregulation of NF...

متن کامل

Activation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells

Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...

متن کامل

p120 Modulates LPS-Induced NF-κB Activation Partially through RhoA in Bronchial Epithelial Cells

p120-Catenin (p120) is an adherens junction protein recognized to regulate cell-cell adhesion. Emerging evidence indicates that p120 may also play an important role in inflammatory responses, and the regulatory mechanisms are still unknown. In the present study, we showed that p120 was associated with airway inflammation. p120 downregulation induced nuclear factor-κB (NF-κB) activation, accompa...

متن کامل

Shigella dysenteriae infection activates proinflammatory response through β-catenin/NF-κB signaling pathway

Shigella dysenteriae (S.dysenteriae) the causative agent of bacillary dysentery invades the human colonic epithelium resulting in severe intestinal inflammatory response and epithelial destruction. However, the mechanism by which S.dysenteriae infection regulates proinflammatory cytokines during intestinal inflammation is still obscure. In this study, we evaluated whether the interaction of β-c...

متن کامل

The effect of down-regulation of CCL5 on lipopolysaccharide-induced WI-38 fibroblast injury: a potential role for infantile pneumonia

Objective(s): Aberrant expression of CCL5 has been found in several kinds of inflammatory diseases, and the roles of CCL5 in these diseases have also been reported. However, the role of CCL5 in infantile pneumonia is still unclear. Thus, the function and acting mechanism of CCL5 in the in vitro model of infantile pneumonia were researched in this study. Materials and Methods: Human fetal lung f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of molecular medicine

دوره 34 2  شماره 

صفحات  -

تاریخ انتشار 2014